
WebAssembly Spec Addendum:
Legacy Exception Handling

WebAssembly Community Group
Andreas Rossberg (editor)

Oct 31, 2024

Contents

1 Introduction 1

2 Structure 2

3 Validation 2

4 Execution 4

5 Binary Format 8

6 Text Format 8

7 Index of Instructions 8

1 Introduction

This document describes an extension of the official WebAssembly standard developed by its W3C Community
Group1 with additional instructions for exception handling. These instructions were never standardized and are
deprecated, but they may still be available in some engines, especially in web browsers.

1 https://www.w3.org/community/webassembly/

1

https://www.w3.org/community/webassembly/
https://www.w3.org/community/webassembly/


2 Structure

2.1 Instructions

Control Instructions

The set of recognised instructions is extended with the following:

instr ::= . . .
| try blocktype instr* (catch tagidx instr*)* (catch_all instr*)? end
| try blocktype instr* delegate labelidx
| rethrow labelidx

The instructions try and rethrow, are concerned with exceptions. The try instruction installs an exception handler,
and may either handle exceptions in the case of catch and catch_all, or rethrow them in an outer block in the case
of delegate.

The rethrow instruction is only allowed inside a catch or catch_all clause and allows rethrowing the caught excep-
tion by lexically referring to a the corresponding try.

When try-delegate handles an exception, it also behaves similar to a forward jump, effectively rethrowing the
caught exception right before the matching end.

3 Validation

3.1 Conventions

Contexts

The context is enriched with an additional flag on label types:

labeltype ::= catch? resulttype
𝐶 ::= {. . . , labels labeltype*, . . . }

Existing typing rules are adjusted as follows:

• All rules that extend the context with new labels use an absent catch flag.

• All rules that inspect the context for a label ignore the presence of a catch flag.

Note: This flag is used to distinguish labels bound by catch clauses, which can be targeted by rethrow.

3.2 Instructions

Control Instructions

try blocktype instr*1 (catch 𝑥 instr*2)
* (catch_all instr*3)? end

• The block type must be valid as some function type [𝑡*1] → [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the label type [𝑡*2] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr*1 must be valid with type [𝑡*1] → [𝑡*2].

• Let 𝐶 ′′ be the same context as 𝐶, but with the label type catch [𝑡*2] prepended to the labels vector.

• For every 𝑥𝑖 and instr*2𝑖 in (catch 𝑥 instr*2)
*:

2



– The tag 𝐶.tags[𝑥𝑖] must be defined in the context 𝐶.

– Let [𝑡*3𝑖] → [𝑡*4𝑖] be the tag type 𝐶.tags[𝑥𝑖].

– The result type [𝑡*4𝑖] must be empty.

– Under context 𝐶 ′′, the instruction sequence instr*2𝑖 must be valid with type [𝑡*3𝑖] → [𝑡*2].

• If (catch_all instr*3)? is not empty, then:

– Under context 𝐶 ′′, the instruction sequence instr*3 must be valid with type [] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1] → [𝑡*2].

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*2] ⊢ instr*1 : [𝑡*1] → [𝑡*2]
(𝐶.tags[𝑥] = [𝑡*] → [])*

𝐶, labels (catch [𝑡*2]) ⊢ instr*2 : [𝑡*] → [𝑡*2])
*

(𝐶, labels (catch [𝑡*2]) ⊢ instr*3 : [] → [𝑡*2])
?

𝐶 ⊢ try blocktype instr*1 (catch 𝑥 instr*2)
* (catch_all instr*3)? end : [𝑡*1] → [𝑡*2]

Note: The notation 𝐶, labels (catch [𝑡*]) inserts the new label type at index 0, shifting all others.

try blocktype instr* delegate 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• The block type must be valid as some function type [𝑡*1] → [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡*2] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1] → [𝑡*2].

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*2] ⊢ instr* : [𝑡*1] → [𝑡*2] 𝐶.labels[𝑙] = [𝑡*0]

𝐶 ⊢ try blocktype instr* delegate 𝑙 : [𝑡*1] → [𝑡*2]

Note: The label index space in the context 𝐶 contains the most recent label first, so that 𝐶.labels[𝑙] performs a
relative lookup as expected.

rethrow 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• Let (catch? [𝑡*]) be the label type 𝐶.labels[𝑙].

• The catch must be present in the label type 𝐶.labels[𝑙].

• Then the instruction is valid with type [𝑡*1] → [𝑡*2], for any sequences of value types 𝑡*1 and 𝑡*2.

𝐶.labels[𝑙] = catch [𝑡*]

𝐶 ⊢ rethrow 𝑙 : [𝑡*1] → [𝑡*2]

Note: The rethrow instruction is stack-polymorphic.

3



4 Execution

4.1 Runtime Structure

Stack

Exception Handlers

Legacy exception handlers are installed by try instructions. Instead of branch labels, their catch clauses have in-
struction blocks associated with them. Furthermore, a delegate handler is associated with a label index to implicitly
rewthrow to:

catch ::= . . .
| catch tagidx instr*

| catch_all tagidx instr*

| delegate labelidx

Administrative Instructions

Administrative instructions are extended with the caught instruction that models exceptions caught by legacy ex-
ception handlers.

instr ::= . . .
| caught𝑛{exnaddr} instr* end

Block Contexts

Block contexts are extended to include caught instructions:

𝐵𝑘 ::= . . .
| caught𝑛 {exnaddr} 𝐵𝑘 end

Throw Contexts

Throw contexts are also extended to include caught instructions:

𝑇 ::= . . .
| caught𝑛{exnaddr} 𝑇 end

4.2 Instructions

Control Instructions

try blocktype instr*1 (catch 𝑥 instr*2)
* (catch_all instr*3)? end

1. Assert: due to validation, expand𝐹 (blocktype) is defined.

2. Let [𝑡𝑚1 ] → [𝑡𝑛2 ] be the function type expand𝐹 (blocktype).

3. Let 𝐿 be the label whose arity is 𝑛 and whose continuation is the end of the try instruction.

4. Assert: due to validation, there are at least 𝑚 values on the top of the stack.

5. Pop the values val𝑚 from the stack.

6. Let 𝐹 be the current frame.

4



7. For each catch clause (catch 𝑥𝑖 instr
*
2𝑖) do:

a. Assert: due to validation, 𝐹.module.tagaddrs[𝑥𝑖] exists.

b. Let 𝑎𝑖 be the tag address 𝐹.module.tagaddrs[𝑥𝑖].

c. Let catch𝑖 be the catch clause (catch 𝑎𝑖 instr
*
2𝑖).

8. If there is a catch-all clause (catch_all instr*3), then:

a. Let catch ′? be the handler (catch_all instr*3).

9. Else:

a. Let catch ′? be empty.

10. Let catch* be the concatenation of catch𝑖 and catch ′?.

11. Enter the block val𝑚 instr*1 with label 𝐿 and exception handler handler𝑛{catch*}*.

𝐹 ; val𝑚 (try bt instr*1 (catch 𝑥 instr*2)
* (catch_all instr*3)? end →˓

𝐹 ; label𝑛{𝜖} (handler𝑛{(catch 𝑎𝑥 instr*2)
* (catch_all instr*3)?} val𝑚 instr*1 end) end

(if expand𝐹 (bt) = [𝑡𝑚1 ] → [𝑡𝑛2 ] ∧ (𝐹.module.tagaddrs[𝑥] = 𝑎𝑥)
*)

try blocktype instr* delegate 𝑙

1. Assert: due to validation, expand𝐹 (blocktype) is defined.

2. Let [𝑡𝑚1 ] → [𝑡𝑛2 ] be the function type expand𝐹 (blocktype).

3. Let 𝐿 be the label whose arity is 𝑛 and whose continuation is the end of the try instruction.

4. Let 𝐻 be the exception handler 𝑙, targeting the 𝑙-th surrounding block.

5. Assert: due to validation, there are at least 𝑚 values on the top of the stack.

6. Pop the values val𝑚 from the stack.

7. Enter the block val𝑚 instr* with label 𝐿 and exception handler HANDLER_n{DELEGATE~l}.

𝐹 ; val𝑚 (try bt instr* delegate 𝑙) →˓ 𝐹 ; label𝑛{𝜖} (handler𝑛{delegate 𝑙} val𝑚 instr* end) end
(if expand𝐹 (bt) = [𝑡𝑚1 ] → [𝑡𝑛2 ])

throw_ref

1. Let 𝐹 be the current frame.

2. Assert: due to validation, a reference is on the top of the stack.

3. Pop the reference ref from the stack.

4. If ref is ref.null ht , then:

a. Trap.

5. Assert: due to validation, ref is an exception reference.

6. Let ref.exn ea be ref .

7. Assert: due to validation, 𝑆.exns[ea] exists.

8. Let exn be the exception instance 𝑆.exns[ea].

9. Let 𝑎 be the tag address exn.tag.

10. While the stack is not empty and the top of the stack is not an exception handler, do:

a. Pop the top element from the stack.

5



11. Assert: the stack is now either empty, or there is an exception handler on the top of the stack.

12. If the stack is empty, then:

a. Return the exception (ref.exn 𝑎) as a result.

13. Assert: there is an exception handler on the top of the stack.

14. Pop the exception handler handler𝑛{catch*} from the stack.

15. If catch* is empty, then:

a. Push the exception reference ref.exn ea back to the stack.

b. Execute the instruction throw_ref again.

16. Else:

a. Let catch1 be the first catch clause in catch* and catch ′* the remaining clauses.

b. If catch1 is of the form catch 𝑥 𝑙 and the exception address 𝑎 equals 𝐹.module.tagaddrs[𝑥], then:

i. Push the values exn.fields to the stack.

ii. Execute the instruction br 𝑙.

c. Else if catch1 is of the form catch_ref 𝑥 𝑙 and the exception address 𝑎 equals 𝐹.module.tagaddrs[𝑥],
then:

i. Push the values exn.fields to the stack.

ii. Push the exception reference ref.exn ea to the stack.

iii. Execute the instruction br 𝑙.

d. Else if catch1 is of the form catch_all 𝑙, then:

i. Execute the instruction br 𝑙.

e. Else if catch1 is of the form catch_all_ref 𝑙, then:

i. Push the exception reference ref.exn ea to the stack.

ii. Execute the instruction br 𝑙.

f. Else if catch1 is of the form catch 𝑥 instr* and the exception address 𝑎 equals 𝐹.module.tagaddrs[𝑥],
then:

i. Push the caught exception caught𝑛{ea} to the stack.

ii. Push the values exn.fields to the stack.

iii. Enter the catch block instr*.

g. Else if catch1 is of the form catch_all instr*, then:

i. Push the caught exception caught𝑛{ea} to the stack.

ii. Enter the catch block instr*.

h. Else if catch1 is of the form delegate 𝑙, then:

i. Assert: due to validation, the stack contains at least 𝑙 labels.

ii. Repeat 𝑙 times:

• While the top of the stack is not a label, do:

– Pop the top element from the stack.

iii. Assert: due to validation, the top of the stack now is a label.

iv. Pop the label from the stack.

v. Push the exception reference ref.exn ea back to the stack.

vi. Execute the instruction throw_ref again.

6



i. Else:

1. Push the modified handler handler𝑛{catch ′*} back to the stack.

2. Push the exception reference ref.exn ea back to the stack.

3. Execute the instruction throw_ref again.

. . .
handler𝑛{(catch 𝑥 instr*) catch*} 𝑇 [(ref.exn 𝑎) throw_ref] end →˓ caught𝑛{𝑎} exn.fields instr* end

(if exn = 𝑆.exns[𝑎]
∧ exn.tag = 𝐹.module.tagaddrs[𝑥])

handler𝑛{(catch_all instr*) catch*} 𝑇 [(ref.exn 𝑎) throw_ref] end →˓ caught𝑛{𝑎} instr* end
𝐵𝑙[handler𝑛{(delegate 𝑙) catch*} 𝑇 [(ref.exn 𝑎) throw_ref] end] →˓ (ref.exn 𝑎) throw_ref

rethrow 𝑙

1. Assert: due to validation, the stack contains at least 𝑙 + 1 labels.

2. Let 𝐿 be the 𝑙-th label appearing on the stack, starting from the top and counting from zero.

3. Assert: due to validation, 𝐿 is a catch label, i.e., a label of the form (catch [𝑡*]), which is a label followed
by a caught exception in an active catch clause.

4. Let 𝑎 be the caught exception address.

5. Push the value ref.exn 𝑎 onto the stack.

6. Execute the instruction throw_ref.

caught𝑛{𝑎} 𝐵𝑙[rethrow 𝑙] end →˓ caught𝑛{𝑎} 𝐵𝑙[(ref.exn 𝑎) throw_ref] end

Entering a catch block

1. Jump to the start of the instruction sequence instr*.

Exiting a catch block

When the end of a catch block is reached without a jump, thrown exception, or trap, then the following steps are
performed.

1. Let val𝑚 be the values on the top of the stack.

2. Pop the values val𝑚 from the stack.

3. Assert: due to validation, a caught exception is now on the top of the stack.

4. Pop the caught exception from the stack.

5. Push val𝑚 back to the stack.

6. Jump to the position after the end of the administrative instruction associated with the caught exception.

caught𝑛{𝑎} val𝑚 end →˓ val𝑚

Note: A caught exception can only be rethrown from the scope of the administrative instruction associated with
it, i.e., from the scope of the catch or catch_all block of a legacy try instruction. Upon exit from that block, the
caught exception is discarded.

7



5 Binary Format

5.1 Instructions

Control Instructions

instr ::= . . .
| 0x06 bt :blocktype (in1:instr)

*

(0x07 𝑥:tagidx (in2:instr)
*)*

(0x19 (in3:instr)
*)? 0x0B ⇒ try bt in*

1 (catch 𝑥 in*
2)

* (catch_all in*
3)

?end
| 0x06 bt :blocktype (in:instr)*

0x18 𝑙:labelidx ⇒ try bt in* delegate 𝑙
| 0x09 𝑙:labelidx ⇒ rethrow 𝑙

6 Text Format

6.1 Instructions

Control Instructions

The label identifier on a structured control instruction may optionally be repeated after the corresponding end,
else, catch, catch_all, and delegate pseudo instructions, to indicate the matching delimiters.

blockinstr𝐼 ::= . . .
| ‘try’ 𝐼 ′:label𝐼 bt :blocktype (in1:instr𝐼′)*

(‘catch’ id?1 𝑥:tagidx𝐼 (in2:instr𝐼′)*)*

(‘catch_all’ id?1 (in3:instr𝐼′)*)?

‘end’ id?2
⇒ try bt in*

1 (catch 𝑥 in*
2)

* (catch_all in*
3)

? end
(if id?1 = 𝜖 ∨ id?1 = label, id?2 = 𝜖 ∨ id?2 = label)

| ‘try’ 𝐼 ′:label𝐼 bt :blocktype (in1:instr𝐼′)*

‘delegate’ 𝑙:labelidx𝐼 l :labelidx𝐼
⇒ try bt in*

1 delegate 𝑙 (if id? = 𝜖 ∨ id? = label)
plaininstr𝐼 ::= . . .

| ‘rethrow’ 𝑙:labelidx𝐼 ⇒ rethrow 𝑙

7 Index of Instructions

Instruction Binary Opcode Type Validation Execution
try bt 0x06 [𝑡*1] → [𝑡*2] validation, validation execution, execution
catch 𝑥 0x07 validation execution
rethrow 𝑛 0x09 [𝑡*1] → [𝑡*2] validation execution
delegate 𝑙 0x18 validation execution
catch_all 0x19 validation execution

8


	Introduction
	Structure
	Instructions
	Control Instructions


	Validation
	Conventions
	Contexts

	Instructions
	Control Instructions
	[syntax/instructions:syntax-instr-control]try [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr1 ([syntax/instructions:syntax-instr-control]catch x [syntax/instructions:syntax-instr]instr2) ([syntax/instructions:syntax-instr-control]catch_all [syntax/instructions:syntax-instr]instr3)? [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]try [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]delegate l
	[syntax/instructions:syntax-instr-control]rethrow l



	Execution
	Runtime Structure
	Stack
	Administrative Instructions
	Block Contexts
	Throw Contexts


	Instructions
	Control Instructions
	[syntax/instructions:syntax-instr-control]try [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr1 ([syntax/instructions:syntax-instr-control]catch x [syntax/instructions:syntax-instr]instr2) ([syntax/instructions:syntax-instr-control]catch_all [syntax/instructions:syntax-instr]instr3)? [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]try [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]delegate l
	[syntax/instructions:syntax-instr-control]throw_ref
	[syntax/instructions:syntax-instr-control]rethrow l
	Entering a catch block
	Exiting a catch block



	Binary Format
	Instructions
	Control Instructions


	Text Format
	Instructions
	Control Instructions


	Index of Instructions

